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Abstract

This paper provides norm-based general-
ization bounds for the Transformer archi-
tecture that do not depend on the in-
put sequence length. We employ a cov-
ering number based approach to prove
our bounds. We use three novel covering
number bounds for the function class of
bounded linear mappings to upper bound
the Rademacher complexity of the Trans-
former. Furthermore, we show this gen-
eralization bound applies to the common
Transformer training technique of masking
and then predicting the masked word. We
also run a simulated study on a sparse ma-
jority data set that empirically validates
our theoretical findings.

1 INTRODUCTION

Since Vaswani et al. (2017) debuted the Trans-
former, it has become one of the most preeminent
architectures of its time. It has achieved state of the
art prediction capabilities in various fields (Dosovit-
skiy et al., 2020; Wu et al., 2022; Vaswani et al.,
2017; Pettersson and Falkman, 2023) and an imple-
mentation of it has even passed the BAR exam (Katz
et al., 2023). With such widespread use, the theo-
retical underpinnings of this architecture are of great
interest.

Specifically, this paper is concerned with bounding
the generalization gap when using the Transformer
in supervised learning. These upper bounds can be
used to help understand how sample size needs to
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scale with different architecture parameters and they
are a very common theoretical tool to understand
machine learning algorithms (Kakade et al., 2008;
Garg et al., 2020; Truong, 2022; Lin and Zhang,
2019).

One such architecture parameter is the sequence
length of the input. Since the input of Transform-
ers can be thought of as a sequence of tokens (e.g.
a sequence of word embeddings), the maximum al-
lowable length of an input sequence is called the se-
quence length.

The main contribution of this paper is providing
norm-based generalization bounds for the Trans-
former architecture that have no explicit dependence
on the input sequence length. We also contribute 3
novel vector valued linear mapping covering number
bounds that are the key to obtain our generaliza-
tion bounds. Furthermore, we give an example of a
regime where our bounds apply and we give empiri-
cal evidence that our theory holds.

Previously, the best known norm-based generaliza-
tion bound scaled with the logarithm of the sequence
length (Edelman et al., 2022). Removing the depen-
dence on sequence length leads to more intuitively
appealing bounds since the total number of param-
eters in the Transformer is independent of input se-
quence length. Since our bounds are norm-based
they have potential to provide meaningful guaran-
tees even in overparameterized regimes where pa-
rameter counting bounds might be less meaningful.

We are able to show this by going through the
Rademacher complexity of the Transformer and then
using three novel linear covering number bounds to
bound the Rademacher complexity. Therefore, Sec-
tion 1 goes over the necessary background needed.
Section 2 shows the novel covering number bounds
for a linear mapping function class with bounded
matrices and inputs. In Section 3 we start deal-
ing specifically with Transformers. Here we show
a new Rademacher complexity bound for a single
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layer Transformer. Section 4 provides details on
how our covering number bounds can be used in the
multi-layer analysis of Edelman et al. (2022) to get
a sequence length independent norm-based general-
ization bound. Section 5 shows how a method of
training used in BERT (Devlin et al., 2018) can be
reduced to what is studied in this paper. Finally,
in Section 7 we show an experiment on a simulated
sparse majority data set to empirically validate our
theoretical findings.

1.1 Related Works

This paper is most closely related to the work of
Edelman et al. (2022) who prove a norm-based gen-
eralization bound that grows logarithmically with
sequence length. Due to this, they state Transform-
ers have an inductive bias to represent a sparse func-
tion of the inputs. We bolster this claim further by
removing the dependence on sequence length alto-
gether.

Another result similar to our is given by Zhang
et al. (2022). They are able to remove the depen-
dence on sequence length. However, the bound they
get, which we shall call a parameter counting-based
bound, has several drawbacks which we discuss in
Section 2.5. Wei et al. (2022) also show generaliza-
tion bounds for Transformers, but specifically study
binary classification setting with 0-1 loss and use a
margin approach. Fu et al. (2023) freeze some of the
weight matrices at initialization and bound the ex-
cess risk in this setting as a function of the amount
of heads in the attention layer. This paper’s bound
also do not depend on sequence length.

Outside of Transformers, using Rademacher com-
plexity in deep learning to bound the generalization
gap has a rich history. Golowich et al. (2018) was
able to use Rademacher complexities to get a gener-
alization bound independent of the depth and width
of a neural network. Truong (2022) is able to use
Rademacher complexity to get nearly tight bounds
on neural networks under some assumptions on the
data. Also, Bartlett et al. (2017) use covering num-
bers and Rademacher complexity to get generaliza-
tion bounds on multiclass neural networks using a
margin based approach.

2 BACKGROUND

2.1 Matrix Definitions

For our matrix notation we will, in general, use cap-
ital letters for matrices and lowercase letters for vec-

tors. For a matrix W , we will use W:,i to denote the
ith column of W and Wi to denote the ith row unless
otherwise noted.

Now, we will define a few well-used matrix norms.
Let p, q, r, d ∈ N and let W ∈ Rr×d. The first norm,
denoted as ∥W∥q,p, will be defined as ∥W∥q,p =∥∥∥[∥W:,1∥q , . . . ∥W:,d∥q]⊤

∥∥∥
p
.

Another matrix norm, also known as the operator
norm, we will denote as ∥W∥q→p. This one is defined
as:

∥W∥q→p = sup
x∈Rd\0

∥Wx∥p
∥x∥q

One final matrix norm we will review is the Frobe-
nius norm, denoted as ∥W∥F , which is defined as:

∥W∥F =

√√√√ r∑
i=1

d∑
j=1

W 2
ij

We will also denote ∥W∥2→2 as ∥W∥2. A well known
property of the ∥·∥2→2 operator is that it is equal to
the largest singular value of the input matrix. The
Frobenius norm is also well known to be equal to the
the square root of the squared sum of the singular
values of a matrix. Therefore, we have ∥W∥2→2 ≤
∥W∥F for any matrix W .

2.2 Generalization Bounds

When training machine learning algorithms, we can
only use a finite amount of data to learn from, how-
ever, we want our resulting function to generalize
well outside of our training sample. Thus, having
guarantees with high probability on the difference
between the loss on our training sample and the loss
on our testing population is extremely important.
Generalization bounds try to upper bound this loss
gap.

Mathematically, if we have a hypothesis class H,
sample space X , label space Y, loss function ℓ, and
distribution over the sample and label space D, then
our generalization gap for a set of samples and labels
S = {(xi, yi)}ni=1, xi ∈ X , yi ∈ Y, on the hypothesis
h ∈ H is defined to be∣∣∣∣∣E(x,y)∼D [ℓ(h(x), y)] − 1

n

n∑
i=1

ℓ(h(xi), yi)

∣∣∣∣∣
Notice how if we can have this value go to 0 with
high probability over all sets of samples and for all
h ∈ H, then we can be confident that minimizing
the sample loss will not impact our generalization.
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2.3 Rademacher Complexity

One such tool that can be used to upper bound
the generalization gap is the Rademacher complex-
ity. Let us have the same set up as in the previous
section. Then the Rademacher complexity of a hy-
pothesis class H is defined to be

Radn(H, S) =
1

n
Eσ

[
sup
h∈H

n∑
i=1

σih(xi)

]
where each σi are i.i.d. and take values ±1 each
with half probability and σ = (σ1, . . . , σn). It is well
known that (Shalev-Shwartz and Ben-David, 2014),
if the magnitude of our loss function is bounded
above by c, with probability greater than 1 − δ for
all h ∈ H, we have∣∣∣∣∣E(x,y)∼D [ℓ(h(x), y)] − 1

n

n∑
i=1

ℓ(h(xi), yi)

∣∣∣∣∣ ≤
2Radn(ℓ ◦ H, S) + 4c

√
2 log(4/δ)

m

where ℓ ◦ H = {(x, y) 7→ ℓ(h(x), y) | h ∈ H}. There-
fore, if we have an upper bound on the Rademacher
complexity, we can have an upper bound on the gen-
eralization gap.

2.4 Covering Numbers

The use of covering numbers is one such way we can
bound the Rademacher complexity of a hypothesis
class. Let q ∈ R>0 and let us have a function class F ,
∀f ∈ F f : Rd → Rk. We say a subset F̂ ⊂ F covers
a set of inputs {xi}ni=1 if for every f ∈ F , ∃f̂ ∈ F̂
such that supxi

∥∥∥f(xi) − f̂(xi)
∥∥∥
q
< ϵ. We will use

the notation N∞(F , ϵ, {xi}ni=1, ∥·∥q) for this. We will
define the covering number, N∞(F , ϵ, n, ∥·∥q) as

sup
{xi}n

i=1

N∞(F , ϵ, {xi}ni=1, ∥·∥q)

It has been shown that for scalar valued hypothesis
classes, the Rademacher complexity can be upper
bounded using the covering number of the hypoth-
esis class (Dudley, 1967). Using a slightly modified
version, we have for a constant c:

Radn(f, S) ≤ c inf
δ≥0

(
δ +

∫ ∞

δ

√
logN∞(F , ϵ, n)

n
dϵ

)
Notice that if we have a bounded function class, then
the ∞ in the integral limit can become the upper
bound of the function class.

2.5 Two Types of Bounds

Suppose our inputs have dimension d and the in-
puts have an upper norm bound of Bx. Suppose
our matrices have dimension k × d and have an
upper norm bound of Bw. Here we will note two
different types of generalization bounds that can
one can arrive at depending on the perspective.
One is where you have the norm bounds inside a
log term and the dimensions on the outside (e.g.,
O(
√
dk log(BxBw))/n). The other is where you

have the bounds outside the log term and parameters
inside (e.g., O(

√
BxBw log(dk))/n). We will refer to

the former as parameter-counting type bounds and
the latter as the norm-based type bounds. We note
that these are not the only types of bounds, just
these are the ones relevant to this paper.

Notice how, for parameter counting bounds, over-
parameterized architectures can lead to vacuous
bounds. Also notice that parameter counting
bounds do not take full advantage of SGD’s implicit
regularization since the norms are within the loga-
rithm. In contrast, as long as the norm bounds are
reasonable, norm-based generalization bounds work
well with over-parameterized architectures and work
well with implicit regularization.

For Transformers, there are norm-based bounds that
scale logarithmically with sequence length (Edelman
et al., 2022) and parameter counting bounds that do
not scale with sequence length (Zhang et al., 2022).
This is a gap in the literature which this paper in-
tends to fill.

2.6 Self-Attention and Transformers

We will follow the definition of self-attention and
Transformers set forth by Edelman et al. (2022) and
keep with their notation.

Let Wc ∈ Rk×d, Wv ∈ Rd×k, and WQ,WK ∈ Rd×T

be trainable weight matrices. Let X ∈ RT×d be
the input, which can be thought of as sequence of T
d-dimensional tokens. Also, let σ be a Lσ-Lipshitz
activation function that is applied elementwise and
has the property σ(0) = 0. Finally, let RowSoftmax
donote applying softmax on each row of its input.
Then, they define a Transformer head as

σ
(
RowSoftmax

(
XWQW

⊤
KX⊤)XWv

)
Wc

Since WQ and WK are only ever multiplied with
each other, we will combine WQW

⊤
K into a single

matrix WQK ∈ Rd×d for convenience of analysis.
Once we do this, note that the total dimensionality
(of WQK ,Wc,Wv) is independent of T , the sequence
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length which counts how many tokens are in each
sample. The embedding dimension is d since it is
the dimension that the values in the sequence are
embedded into and k is the hidden dimension.

For multi-head Transformers, we assume each head
is summed up at the end of each layer. That is, the
output for a layer of a multi-head Transformer is:

H∑
h=1

σ
(
RowSoftmax

(
XWh,QW

⊤
h,KX⊤)XWh,v

)
Wh,c

Note how the ouput of a layer can be used as the in-
put to another layer. This is how multi-layer Trans-
former networks are created. Standard practice is
to add layer normalization in between each layer as
this has been well studied to aid in optimization and
generalization (Ba et al., 2016; Wang et al., 2019; Xu
et al., 2019). Thus, keeping with the definitions and
notation previously set forth, we will inductively de-
fine an L-layer Transformer block:

Let W(i) = {W (i)
v ,W

(i)
c ,W

(i)
QK} and let W1:i =

{W1, . . .W(i−1)}. Also, let

f(X;W (i)) = σ
(
RowSoftmax

(
XWQW

⊤
KX⊤)XWv

)
g1block

(
X;W 1:1

)
= X

Then, the output of the ith layer is defined to be

g
(i+1)
block

(
X;W 1:i+1

)
=

Πnorm

(
σ
(

Πnorm

(
f
(
g
(i)
block

(
X;W 1:i

)
;W (i)

)))
W (i)

c

)
where Πnorm projects each row onto the unit ball.

In our analysis we will focus on the scalar output
setting for Transformers. Specifically, we will follow
how BERT trains for scalar output (Devlin et al.,
2018). In order to get a scalar output, we add an
extra input in the sequence that can be constant or
trained. Let this index be the [CLS] index. Let
us also have a trainable vector w ∈ Rd. Then, at
the last layer, take the output at the [CLS] index,
Y[CLS] ∈ Rd and multiply it with w to get our output

w⊤Y[CLS] ∈ R.

3 LINEAR COVERING NUMBER
BOUNDS

In this section we will show three different covering
number bounds for linear function classes with dif-
ferent restrictions on input and matrix norms. To
show the first one, we need the following lemmas,
the first one is attributed to Maurey (Pisier, 1981)
and first used in this context by Zhang (2002):

Lemma 3.1. (Maurey’s Sparsification Lemma) Let
H be a Hilbert space and let each f ∈ H have the
representation f =

∑d
i=1 αiVi where Vi ∈ H, ∥Vi∥ ≤

b and αi ≥ 0 with γ = ∥α∥1 ≤ 1. Then, for any

k ∈ N, there exist k1, . . . , kd, ki ∈ Z≥0,
∑d

i=1 ki ≤ k,
such that∥∥∥∥∥f − 1

k

d∑
i=1

kiVi

∥∥∥∥∥
2

2

≤ γ2b2 − ∥f∥2

k

We note that the total amount of (k1, . . . kd)’s that
fit the criteria above is less than or equal to dk. This
has been used to upper bound the covering num-
ber for linear functions (Zhang, 2002; Bartlett et al.,
2017) and we will use it similarly in our proofs.

For covering a class of scalar valued linear functions
{x → w⊤x | w ∈ Rd,w norm bounded} with inputs
{xi ∈ Rd}ni=1, it is known that we are able to re-
move the dependence on n and replace it with a
dependence on d. Kontorovich and Attias (2021)
show this and attribute it to folklore. Given a cover
such as this, it is an immediate extension to cre-
ate a non-n-dependent cover of the function class
{x → Wx,W ∈ W} as long as each row in each
W ∈ W is bounded by the norm restraint needed
for the scalar valued cover (specific details are in
appendix section A).

Our first contribution generalizes the above by al-
lowing us to consider more possible norm bounds on
W. It shows that, under certain norm restrictions
for our input, the linear mappings covering number
for any set of size N is equivalent to the covering
number on the appropriately scaled standard basis
(proof in Appendix Section B).

Lemma 3.2. Let W ⊂ Rk×d and let F = {x →
Wx | W ∈ W} with ∥x∥1 ≤ Bx. Then, for N ≥ d,
we have

N∞

(
F , ϵ,N, ∥·∥q

)
= N∞

(
F , ϵ, {Bxe1, . . . , Bxed}, ∥·∥q

)
3.1 Log Covering Number For ∥·∥1

Bounded Input and ∥·∥1,∞ Bounded
Matrix

Now, we will show our three covering number
bounds. Each of the three have different norm
bounds on the inputs and the matrices, allowing for
flexibility when deciding which to use.

Lemma 3.3. Let N ≥ d, W = {W ∈ Rk×d |
∥W∥1,∞ ≤ Bw}, F = {x → Wx | W ∈ W}, and let

our inputs x ∈ Rd have the restriction ∥x∥1 ≤ Bx.
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Then:

logN∞ (F , ϵ,N, ∥·∥2) ≤ dB2
wB

2
x

ϵ2
log(2k + 1)

Proof. We will abuse notation slightly by referring
to W at times instead of F (and similar for Ŵ and
F̂).

Let us have the set V = {v ∈ Rk | ∥v∥1 ≤ Bw}.
Then notice by lemma 3.1 we have that there exists
an ϵ/Bx cover for V that has log size

B2
wB

2
x

ϵ2
log(2k + 1)

Let this cover be V̂ . We claim that

Ŵ = V̂ ⊗ V̂ · · · ⊗ V̂︸ ︷︷ ︸
d total times

is a cover for W.

To show this, let W ∈ W and let Ŵ ∈ Ŵ be the one
where each column is the vector that would be cho-
sen to cover the corresponding column in W . Then,
notice for all i ∈ [d] we have∥∥∥(W − Ŵ )Bxei

∥∥∥ = Bx

∥∥∥W:,i − Ŵ:,i

∥∥∥ ≤ Bx
ϵ

Bx
= ϵ

Therefore

sup
i∈[d]

∥∥∥(W − Ŵ )Bxei

∥∥∥ ≤ ϵ

which, by lemma 3.2 shows that

logN∞ (F , ϵ,N, ∥·∥2) ≤ dB2
wB

2
x

ϵ2
log(2k + 1)

3.2 Log Covering Number For ∥·∥1
Bounded Input and ∥·∥2,1 Bounded
Matrix

Lemma 3.4. Let N > d, W = {W ∈ Rk×d |
∥W∥2,1 ≤ Bw}, F = {x → Wx | W ∈ W}, and let

our inputs x ∈ Rd have the restriction ∥x∥1 ≤ Bx.
Then:

logN∞ (F , ϵ,N, ∥·∥2) ≲
B2

wB
2
x

ϵ2
log(dk)

where ≲ hides logarithmic dependencies except
T, k, d.

Proof. This proof uses Lemma 4.6 in Edelman et al.,
2022 Edelman et al. (2022), which is rewritten below
for clarity.

Lemma 3.5. (Edelman et al., 2022 Lemma 4.6) Let
W and F be as above. Then for any set of points
x1, . . . , xn ∈ Rd with ∥xi∥2 ≤ Bx for all i, we have

logN∞ (F , ϵ, {xi}ni=1, ∥·∥2) ≲
B2

wB
2
x

ϵ2
log(dn)

With this, let Ŵ be an ϵ-cover for W over the inputs
{Bxei}di=1 as stated in the lemma. Then, by lemma

3.2, we have that the cardinality of Ŵ is also an
upper bound for N∞ (F , ϵ,N, ∥·∥2), which is what
we needed to show.

3.3 Log Covering Number For ∥·∥2
Bounded Input and ∥·∥1,1 Bounded
Matrix

Lemma 3.6. Let N ≥ d, W = {W ∈ Rk×d |
∥W∥1,1 ≤ Bw}, F = {x → Wx | W ∈ W}, and let

our inputs x ∈ Rd have the restriction ∥x∥2 ≤ Bx.
Then:

logN∞ (F , ϵ,N, ∥·∥2) ≤ B2
xB

2
w

ϵ2
log(2dk + 1)

Proof. Let V be the set of all the flatten matrices
in W. Note how this implies ∀v ∈ V, we have
∥v∥1 ≤ Bw. Then, by Maurey’s sparification lemma,

we have that there exists an ϵ-cover V̂ of log size at

most
B2

w

ϵ2 log(2dk + 1). We claim if we unflatten V̂
(call this Ŵ), then Ŵ is a (Bxϵ)-cover for W. Let
W ∈ W, let V be the flatten version of W . Then, let
V̂ be the flattened vector we would choose for V in
our cover and let Ŵ ∈ Ŵ be the unflattened version
of V̂ . Notice for any x ∈ Rd, ∥x∥2 ≤ Bx:∥∥∥Wx− Ŵx

∥∥∥
2
≤
∥∥∥W − Ŵ

∥∥∥
2→2

∥x∥2 ≤∥∥∥W − Ŵ
∥∥∥
F
∥x∥2 =

∥∥∥V − V̂
∥∥∥
2
∥x∥2 ≤∥∥∥V − V̂

∥∥∥
2
Bx ≤ Bxϵ

Therefore our covering number is at most
B2

xB
2
w

ϵ2 log(2dk + 1)

3.4 Observations on Results

Above we have showed a few different sharpenings
of linear covering numbers with matrices instead of
vectors. Specifically, these do not rely on the sam-
ple size of the input. Also, all but lemma 3.3 keeps
the matrix dimensions inside the log term. We do
note however, the matrix bound in lemma 3.3 is a
1,∞ norm bound while the others are rather 2, 1



Sequence Length Independent Norm-Based Generalization Bounds for Transformers

or 1, 1 norm bound. We know that for any matrix
W , ∥W∥p,1 ≤ d ∥W∥p,∞. Thus if we were to con-
vert lemmas 3.4 and 3.6 into a norm bound on 2,∞
and 1,∞ bounds we would have a d2B2

w term. This
shows that lemma 3.3 is a stronger bound than it
lets on.

4 TRANSFORMER
RADEMACHER COMPLEXITY

4.1 Analysis for Single Layer Transformer

Let w ∈ Rd, Wc ∈ Rk×d, Wv ∈ Rd×k, WQK ∈ Rd×d

∥w∥1 ≤ Bw,
∥∥W⊤

c

∥∥
1,∞ ≤ BWc

, and
∥∥W⊤

v

∥∥
1,∞ ≤

BWv
. Then we have our scalar one layer Transformer

as w⊤Y[CLS] where

Y[CLS] = W⊤
c σ

(
W⊤

v X⊤softmax
(
XW⊤

QKx[CLS]

))
Our Rademacher complexity is thus the following:

E

 sup
w,Wc,Wv,WQK

m∑
i=1

ϵiw
⊤
W

⊤
c σ

(
W

⊤
v X

⊤
(i)softmax

(
X(i)WQKx[CLS]

))

With this, we have the following theorem:

Theorem 4.1. Suppose we have the required norm
restrictions denoted above along with ∥x∥2 < Bx

∀x ∈ X . Also, suppose we have a covering number
bound in the form of C/ϵ2 for the class {x → Wx |
x ∈ X , w ∈ W} where X and WQK meets these
requirements needed as well. Finally, if we have
m > d and m > ln(2d). Then, an upper bound on
the Rademacher complexity of a single layer Trans-
former layer is:

O

BwBWcLσBWv

 2B2
x

√
C

√
m

(
1 + ln

( √
m

2Bx
√

C

))
+ Bx

√
ln(2d)

m



The proof is left in Appendix Section C for ease of
presentation.

We can now take lemmas 3.3, 3.4, and 3.6 to get
bounds on the Rademacher complexity. In the proof
it can be seen the only matrix that needs to be cov-
ered in WQK , thus we will only have a dependence
on d and not k. We will show one corollary below
and leave the rest to Appendix Section D.

Corollary 4.1.1. Let us have the requirements
needed for Theorem 4.1 along with ∥WQK∥1,1 ≤
BWQK

Let

B = BwBWc
LσBWv

and let

α = BWQK

√
2 log(2d2 + 1)

Then we have our Transformer Rademacher com-
plexity being less than

O

(
B

(
B3

xα√
m

(
1 + ln

(√
m

B2
xα

))
+Bx

√
ln(2d)

m

))

4.2 Single Layer Multiple Heads

Let H ∈ N and let Yj , j ∈ [H] each be a Transformer
head. Then notice by linearity of expectation:

E

 sup
Y1,...,YH

m∑
i=1

ϵiw
⊤

H∑
j=1

Yj(Xi)

 =

H∑
j=1

E

[
sup
Yj

m∑
i=1

ϵiw
⊤Yj(Xi)

]

The expectation above is the same as the single
layer, thus multiple heads just adds a linear H term
to the Rademacher complexity.

4.3 Multiple Layers

We have seen that we are able to get sequence length
independent Rademacher complexities (and there-
fore generalization bounds) for a single layer Trans-
former architecture. For multiple layers, it suffices
to take the proof found in Edelman et al. (2022) and
slightly rework it so that it will work for an arbitrary
linear covering number bound.

Theorem 4.2. (Slight Reworking of Theorem A.17
in Edelman et al., 2022) Suppose we have a log cov-
ering numbers in the form of C1/ϵ

2 and CBx
/ϵ2 for

the function class {x → Wx | x ∈ X , w ∈ W}
where ∥x∥2 ≤ 1 ∀x ∈ X and ∥x∥2 ≤ Bx ∀x ∈ X
respectively. Suppose we also have

∥∥∥W (i)⊤
c

∥∥∥
2
≤ Bc2,∥∥∥W (i)⊤

v

∥∥∥
2
≤ Bv2,

∥∥∥W (i)
QK

∥∥∥
2
≤ BQK2, ∥w∥ ≤ Bw

along with them meeting the needed covering num-
ber restrictions. Let

αi =

L∏
j=i+1

LσBc2Bv2(1 + 4BQK2)

τi = α
2/3
i + (2αiLσBc2Bv2)

2/3 + (αiLσBv2)
2/3

γ = C
1/3
Bx

(2LσBc2Bv2α1Bw)
2/3 + C

1/3
1

(
1 + (BwLσBv2)

2/3
)

η = C
1/3
1

(
B2/3

w

L∑
i=2

τi

)

Then, the log covering number of gL+1
scalar is

(γ + η)3

ϵ2
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The proof is left in Appendix Section E for ease of
presentation.

Notice this is the covering number of the entire
multi-layer Transformer. Thus, we can recover an
upper bound for the Rademacher complexity of it
by using Dudley’s integral.

Substituting our covering number bounds into theo-
rem 4.2 gives us the three corollaries. We state one
below and leave the rest to Appendix Section F.

Corollary 4.2.1. Suppose we have the norm bounds

required in lemma 3.6 for each W
(i)
c ,W

(i)
v ,W

(i)
QK , w

and let the maximum be B. Let Bx be the input
bound. Suppose we also have the bounds needed for
theorem 4.2. Let

αi =

L∏
j=i+1

LσBc2Bv2(1 + 4BQK2)

τi = α
2/3
i + (2αiLσBc2Bv2)

2/3 + (αiLσBv2)
2/3

γ =
(
B2B2

x ln(2dk + 1)
)1/3

(2LσBc2Bv2α1Bw)
2/3 +(

B2 ln(2dk + 1)
)1/3 (

1 + (BwLσBv2)
2/3
)

η =
(
B2 ln(2dk + 1)

)1/3(
B2/3

w

L∑
i=2

τi

)

Then, the log covering number of gL+1
scalar is

(γ + η)3

ϵ2

The above covering number is precise, but unwieldy
to look at. To get a better sense of it, we can see
that, ignoring polylog terms and constants, we get

B2B2
xB

2
w(LσBc2Bv2BQK2)O(L) 1

ϵ2

We do note that the multi-layer method does also
work for one layer, however, it is not quite compa-
rable to the bound found in Section 4.1 due to the
norm restrictions being different. If we were to look
at just the resulting values, the given single layer
method essentially trades the cross product terms in
the cubed factor for a factor of B2

x, which seems like
an acceptable trade. The proof for the single layer
is also much more direct and easy to digest. It also
gives a linear dependence on the amount of heads
when the multi-layer method extended to multiple
heads gives a dependence of H1.5.

5 THEORETICAL EXAMPLE:
WORD PREDICTION IN NLP

Suppose we have a word embedding set up and a
vocabulary of size K. One way to try to learn is by

masking a certain percentage of words in a sentence
and asking the Transformer to predict these words.
Masking is done by taking the row that corresponds
to the position of the masked word (let us call this
row i) and giving as input a specific vector instead of
the actual embedding of the word. Then the predic-
tion is done by taking the vector in row i in the final
layer of the Transformer and linearly transforming it
into a size K vector. Then we can softmax this vec-
tor and use cross entropy loss to train. This is one
of the ways BERT (Devlin et al., 2018) is trained.
Below, we will suppose only 1 word is masked for
each input for ease of presentation. Let us use the
cross entropy loss with softmax:

ℓi(y, x) = −
k∑

i=1

yi log(softmax (x)i)

where y ∈ {0, 1}K is a one-hot encoded value that
specifies the correct word and x ∈ RK is the output
of our Transformer at the masked index. Let us
call this problem set up Transformer word masking.
With this, we state the following theorem:

Theorem 5.1. The Rademacher complexity of
Transformer word masking can be found using The-
orem 4.1 or Theorem 4.2, given the required norm
assumptions and layer size for the theorems hold.

Proof. First, we show this loss function is 2-Lipshitz
in the ℓ∞ norm. We prove this in Appendix G.

Therefore, if we let W be our linear map from the
Transformer row to the vocabulary scores and let

Y
(i)
L be the output of our L-layer Transformer on

the ith sample. We then have by Foster and Rakhlin
(2019):

E

[
sup
W,Y

m∑
i=1

ϵiℓi

(
W (Y

(i)
L )τ

)]
≤

Õ(
√
K) max

s
E

[
sup
W,Y

m∑
i=1

ϵi

(
W (Y

(i)
L )τ

)
s

]
=

Õ(
√
K) max

s
E

[
sup
Ws,Y

m∑
i=1

ϵiWs(Y
(i)
L )τ

]

Notice that W⊤
s ∈ Rd and then by definition

(Y
(i)
L )τ ∈ Rd is a token from our Transformer

output. Thus, the resulting function class in the
Rademacher complexity term is of the same form
needed to use Theorem 4.1 if L = 1 or Theorem
4.2 for L ≥ 1. Therefore, we can use theorems
to find the Rademacher complexity of Transformer
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word masking if the norm restrictions for the theo-
rems hold.

In order to get the generalization bounds from this
Rademacher complexity, we require a bounded loss
function. Using clipped cross entropy has been
shown to have advantages over unbounded cross en-
tropy (Hurtik et al., 2022; Wei et al., 2023), so using
such a loss will allow us to get our generalization
bounds from this set up.

6 EMPIRICAL EXAMPLE:
SPARSE MAJORITY

The above sections show that, with bounded norms
on the weight matrices, our generalization gap
should not grow with sequence length. Thus, in this
section, we will discuss a simulated study to see em-
pirically if we find results that match our theory. We
run a single layer Transformer on a simulated sparse
majority data set on a variety of sequence lengths
and we look at three results: (1) The total 1-norm
of the weights in the Transformer, (2) The cross en-
tropy generalization gap of the best epoch, (3) The
validation accuracy of the best epoch for each se-
quence length.

The first two will show whether or not our theoret-
ical findings are found in practice as well. The last
one is more of a practical concern–a situation where
the generalization gap is small but the network does
not learn is not very useful.

The dataset we create is a sequence of zeros and
ones where the label is determined by a majority of
a sparse set of the indices. More concretely, if we
have a sequence S of length is T , we have a set of
indices is I, |I| < T , the label is

yi = 1{∑i∈I Si>
|I|
2 }

In order to more accurately emulate real uses of
Transformers, we embed 0 and 1 each into a d-
dimensional vector where these two are orthogonal
from each other. We also add the positional encod-
ing defined by Vaswani et al. (2017) to add positional
information to the sequence.

For our experiment we used a single layer of Tensor-
flow’s MultiHeadAttention layer along with a sec-
ond layer that extracts the [CLS] layer and linearly
transforms it into a vector of size 2. The loss we
use is the cross entropy loss. Notice how we can use
Section 5 to make this fit in the regime we have been
discussing in this paper; we can act as if the [CLS]

index is always masked and we have a vocabulary of
size 2 (0 and 1).

The multihead attention layer has embedding di-
mension of 64 and 2 heads. The embedding dimen-
sion was chosen to be large while still allowing for
moderate computation time. Only two heads were
also chosen as well for computation time concerns.
For our dataset, we had the sparse index set car-
dinality to 9 and used 300 training samples on se-
quence length 20, 40, 60, . . . , 200 with a valida-
tion set size of 10000. The index set cardinality and
training set size were chosen after finding a small
enough size where the smaller sequence lengths could
not always get perfect validation accuracy.

The Transformer trained on a NVIDIA Tesla V100
GPU for 200000 epochs with a batch size of 128.
200000 epochs, while a lot, was needed to allow for
the larger sequence lengths to start to overfit. This
batch size was also chosen after trial and error.

We trained our model for each sequence length 5
times (new data set each time) and recorded the
1-norms of the weights, the accuracy, and general-
ization gap of the best epoch. Figure 2 shows the
worst generalization gap for each sequence length.
Figure 1 shows the largest 1-norm of the weights for
each sequence length. Figure 3 shows the best accu-
racy for each sequence length. We note that each of
these do not necessarily represent the same run per
sequence length.

Figure 1: Plot of the max sum of the absolute value
of all the weights across sequence lengths. The lack
of any increasing trend further validates our assump-
tion of bounded weights being credible.

As we can see, the figure 1 shows that the weights do
not increase with sequence length, lending strength
to our matrix norm assumptions.

We can also see in figure 2 the generalization gap also
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Figure 2: Plot of the max generalization gap across
sequence lengths. There is no discernible trend in
the plot, giving empirical validation to our theoret-
ical results

Figure 3: Plot of the maximum accuracy across se-
quence lengths. While this paper makes no claims
on the accuracy, we can see the graph does plateau.
Therefore showing our models were learning well
even at longer sequence lengths.

has no discernible trend and figure 3 shows the ac-
curacy plateaus as sequence length increases. These
results further help validate our theoretical findings
and add evidence that longer sequence lengths do
not inhibit how well Transformers learn.

The code for these experiments can be found here.

7 CONCLUSION AND FUTURE
WORK

In this work, we give norm-based generalization
bounds that do not grow with sequence length. This
fills a hole in the literature where we can now have
sequence length independent generalization bounds

with the good properties the norm-based bounds
give. We also give empirical evidence to validate
our theoretical assumptions and theorems.

Future work could include sharpening the linear cov-
ering number bounds and generalizing them for more
types of matrix/input norm bound combinations.
Another avenue could be analyzing exactly how the
norm-based bounds and parameter counting bounds
trade off with each other.
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Appendix

A Conversion from Scalar Valued Linear Covering Number Bound to Linear
Mapping Covering Number Bound

Suppose we have sets X ,M ⊂ Rd, where ∀w ∈ M, ∥w∥r ≤ Bw and ∀x ∈ X , ∥x∥s ≤ Bx for some positive
values r and s. Suppose we also have a function class F = {x → w⊤x | w ∈ W} and a log covering number
C for this function class on inputs {xi}ni=1 ⊂ X . Let W ⊂ Rk×d, where ∀W ∈ W, ∀i ∈ [k], ∥Wi∥r ≤ Bw.

Now, given a W ∈ W, let us choose

Ŵ =


Ŵ1

Ŵ2

...

Ŵk

 ∈ W

where Ŵ⊤
j is the column vector that would be chosen to cover W⊤

j in the scalar case. Then notice for a
positive value q and for any t ∈ [n]:∥∥∥(W − Ŵ )xt

∥∥∥q
q

=

k∑
j=1

((Wj − Ŵj)xt)
q ≤ kϵq

Thus we can see
logN∞

(
F , k1/qϵ,N, ∥·∥q

)
≤ kC

Therefore, if C does not rely on n, neither does this bound.

B Proof of Lemma 3.2

Notice how the right hand side is a lower bound for the left hand side. Thus, we need to

show N∞

(
F , ϵ, {Bxe1, . . . , Bxed}, ∥·∥q

)
≥ N∞

(
F , ϵ,N, ∥·∥q

)
. To do this, let F̂ be a set of size

N∞

(
F , ϵ, {Bxe1, . . . , Bxed}, ∥·∥q

)
such that it covers F on the set {Bxe1, . . . , Bxed} to size ϵ. We claim F̂

also covers F over any set of size N in our input space. Let Ŵ refer to the matrices used in F̂ . Let W ∈ W
and let Ŵ ∈ Ŵ be the matrix we would choose to cover W. Notice for any ∥x∥1 ≤ Bx, we have

∥∥∥(W − Ŵ )x
∥∥∥
q

=

∥∥∥∥∥
d∑

i=1

(W − Ŵ )xiei

∥∥∥∥∥
q

≤
d∑

i=1

|xi|
∥∥∥(Wi − Ŵi)

∥∥∥
q
≤ Bx max

i∈[d]

(∥∥∥(Wi − Ŵi)
∥∥∥
q

)
=

max
i∈[d]

(∥∥∥(W − Ŵ )Bxei

∥∥∥
q

)
≤ ϵ

Thus for any set of {xi}Ni=1 where ∥x∥1 ≤ Bx we have

sup
j∈[N ]

∥∥∥(W − Ŵ )xj

∥∥∥
q
≤ sup

j∈[N ]

max
i∈[d]

(∥∥∥(W − Ŵ )Bxei

∥∥∥
q

)
= max

i∈[d]

(∥∥∥(W − Ŵ )Bxei

∥∥∥
q

)
≤ ϵ

which shows that it is also an upper bound and thus we have an equality.

C Proof of Single Layer Bound (Theorem 4.1)

Before we start the analysis, for any vectors v, u ∈ Rd, ∥v∥1 ≤ Bv, notice the following inequality:

v⊤u ≤ Bv max
j∈[d]

|eju| = max
j∈[d],s∈{−1,1}

seju
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We will also need this lemma that can be found in Edelman et al. 2022

Lemma C.1. (Corollary A.7 in Edelman et al. 2022) For θ1, θ2 ∈ Rp, we have

∥softmax(θ1) − softmax(θ2)∥1 ≤ 2 ∥θ1 − θ2∥∞

Using the fist inequality above we can see we get:

E

[
sup

w,Wc,Wv,WQK

m∑
i=1

ϵiw
⊤W⊤

c σ
(
W⊤

v X⊤
(i)softmax

(
X(i)WQKx[CLS]

))]
≤

BwE

[
sup

s∈{±1},j∈[d]Wc,Wv,WQK

s

m∑
i=1

ϵie
⊤
j W

⊤
c σ

(
W⊤

v X⊤
(i)softmax

(
X(i)WQKx[CLS]

))]

But now notice that e⊤j W
⊤
c is also just a row vector. Thus we can use the inequality again to get:

BwBWcE

[
sup

s∈{±1},j∈[k],Wv,WQK

s

m∑
i=1

ϵie
⊤
j σ
(
W⊤

v X⊤
(i)softmax

(
X(i)WQKx[CLS]

))]
≤

Since σ is applied elementwise, we can bring e⊤j inside of the function. Also, since σ(0) = 0, we can see that
if we have Wv be the zero matrix, we have 0 in our function class. Therefore, we can get rid of the sign
function by using the well known property of Rademacher complexities of:

Radm(F ∪ −F , S) ≤ 2Radm(F , S)

This, along with the contraction inequality Ledoux and Talagrand (1991) allows us to upper bound the above
by

2BwBWc
LσE

[
sup

j∈[k],Wv,WQK

m∑
i=1

ϵie
⊤
j W

⊤
v X⊤

(i)softmax
(
X(i)WQKx[CLS]

)]

Continuing using the first inequality in this section again, we see

2BwBWcLσE

[
sup

j∈[k],Wv,WQK

m∑
i=1

ϵie
⊤
j W

⊤
v X⊤

(i)softmax
(
X(i)WQKx[CLS]

)]
≤

2BwBWcLσBWvE

[
sup

s∈{±1},j∈[d],WQK

m∑
i=1

sϵie
⊤
j X

⊤
(i)softmax

(
X(i)WQKx[CLS]

)]

Let us call the expectation above E. We will now use covering numbers and Dudley’s integral to bound E
to get our final generalization bound. First, we will use our covering number bound at scale ϵ′ = ϵ/2B2

x.

Specifically, we will show that a set with a log size of ln(2d)+
4B4

xC
ϵ2 covers the function class in the expectation

above. The ln(2d) comes from the fact that we will have to modify Ŵ to have it work for us. We do this by
using the covering function class

S = {X → se⊤j X
⊤softmax

(
XŴQKx[CLS]

)
| s ∈ {−1, 1}, j ∈ [d], ŴQK ∈ Ŵ}

Notice this allows for every ŴQK ∈ Ŵ, we have every combination of s and ej .

Now, using the lemma C.1 and the linear algebra results of ∥Pv∥ ≤ ∥P∥2,∞ ∥v∥1 and ∥X∥2→∞ =
∥∥X⊤

∥∥
2,∞,
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we get: ∥∥∥se⊤j X⊤
(i)softmax

(
X(i)WQKx[CLS]

)
− se⊤j X

⊤
(i)softmax

(
X(i)ŴQKx[CLS]

)∥∥∥ ≤∥∥∥X⊤
(i)softmax

(
X(i)WQKx[CLS]

)
−X⊤

(i)softmax
(
X(i)ŴQKx[CLS]

)∥∥∥ ≤∥∥∥X⊤
(i)

∥∥∥
2,∞

∥∥∥softmax
(
X(i)WQKx[CLS]

)
− softmax

(
X(i)ŴQKx[CLS]

)∥∥∥
1
≤

2
∥∥∥X⊤

(i)

∥∥∥
2,∞

∥∥∥X(i)WQKx[CLS] −X(i)ŴQKx[CLS]

∥∥∥
∞

≤

2
∥∥∥X⊤

(i)

∥∥∥2
2,∞

∥∥∥WQKx[CLS] − ŴQKx[CLS]

∥∥∥ ≤

2B2
X

ϵ

2B2
X

= ϵ

Therefore, we can see the log covering number of S is ln(2d) +
4B4

xC
ϵ2 . Also, notice, due to the softmax in S,

the largest value the function class can be is Bx. Then, using Dudley’s integral we have a constant c such
that

E/c ≤ inf
δ≥0

δ +

∫ Bx

δ

√
ln(2d)

m
+

4B4
xC
ϵ2

m
dϵ ≤

inf
δ≥0

δ + (Bx − δ)

√
ln(2d)

m
+

∫ Bx

δ

√
4B4

xC
ϵ2

m
dϵ ≤

inf
δ≥0

δ + (Bx − δ)

√
ln(2d)

m
+

2B2
x

√
C√

m
ln(Bx/δ)

When m > ln(2d) standard analysis can find the minimum for δ is when

δ =

2B2
x

√
C√

m

1 −
√

ln(2d)
m

=
2B2

x

√
C

√
m−

√
ln(2d)

Substituting this in and rearranging we get

2B2
x

√
C√

m

1 −
√

ln(2d)
m

(
1 −

√
ln(2d)

m

)
+ Bx

√
ln(2d)

m
+

2B2
x

√
C√

m
ln

(
Bx(

√
m−

√
ln(2d))

2B2
x

√
C

)
=

2B2
x

√
C√

m
+ Bx

√
ln(2d)

m
+

2B2
x

√
C√

m
ln

(√
m−

√
ln(2d)

2Bx

√
C

)
Thus, multiplying this by c and substituting this in for E gives us our desired result.

D Corollaries of Theorem 4.1

Corollary D.0.1. Let us have the requirements needed for Theorem 4.1 along with ∥x∥1 ≤ Bx and
∥WQK∥1,∞ ≤ BWQK

. Let
B = BwBWcLσBWv

and let
α = 2BWQK

√
d log(2d + 1)

Then we have our Transformer Rademacher complexity being less than

O

(
B

(
B3

xα√
m

(
1 + ln

(√
m−

√
ln(2d)

B2
xα

))
+Bx

√
ln(2d)

m

))
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Corollary D.0.2. Let us have the requirements needed for Theorem 4.1 along with ∥x∥1 ≤ Bx and
∥WQK∥2,1 ≤ BWQK

Let
B = BwBWc

LσBWv

and let
α = 2BWQK

√
2 log(d)

Then we have our Transformer Rademacher complexity being less than

Ô

(
B

(
B3

xα√
m

(
1 + ln

(√
m−

√
ln(2d)

B2
xα

))
+Bx

√
ln(2d)

m

))

Where the Ô denotes normal O but with some logarithms not containing T, d, k being omitted from inside the formula.

E Proof of Multiple Layers Covering Number (Theorem 4.2)

We will first start with some useful lemmas stated in Edelman et al. (2022). The proofs of these lemmas will
not be reproduced for ease of reading.

Lemma E.1. (Lemma A.8 in Edelman et al. 2022) For ϵ, Ci, βi ≥ 0, i ∈ [n] the solution to

min
ϵ1,...,ϵn

n∑
i=1

Ci

ϵ2i

given
n∑

i=1

βiϵi = ϵ

is γ3

ϵ2 where

γ =

n∑
i=1

C
1/3
i β

2/3
i

and

ϵi =
ϵ

γ

(
Ci

βi

)1/3

The proof is by using Lagrange multipliers.

Lemma E.2. (Lemma A.15 from Edelman et al. 2022) Suppose W 1:i+1, Ŵ 1:i+1 satisfy our norm bounds.
Then we have ∥∥∥(g

(i+1)
block (X;W 1:i+1) − g

(i+1)
block (X; Ŵ 1:i+1))⊤

∥∥∥
2,∞

≤∥∥∥∥(W (i)
c − Ŵ (i)

c )⊤σ
(

Πnorm

(
f(g

(i)
block(X; Ŵ 1:i); Ŵ (i))

))⊤∥∥∥∥
2,∞

+

LσBc2Bv2(1 + 4BQK2)
∥∥∥(g

(i)
block(X;W 1:i) − g

(i)
block(X; Ŵ 1:i))⊤

∥∥∥
2,∞

+

2LσBc2Bv2

∥∥∥(W
(i)
QK − Ŵ

(i)
QK)⊤g

(i)
block(X; Ŵ 1:i)⊤

∥∥∥
2,∞

+

LσBc2

∥∥∥(W (i)
v − Ŵ (i)

v )⊤g
(i)
block(X; Ŵ 1:i)⊤

∥∥∥
2,∞

Lemma E.3. (Lemma A.16 from Edelman et al. 2022) Given W 1:i+1, Ŵ 1:i+1, w, ŵ, and

gscalar(X;W 1:L+1, w) = w⊤g
(L+1)
block (X;W 1:L+1)[CLS], we have:∣∣∣gscalar(X;W 1:L+1, w) − gscalar(X; Ŵ 1:L+1, ŵ)

∣∣∣ ≤
∥w∥

∥∥∥g(L+1)
block (X;W 1:L+1)[CLS] − g

(L+1)
block (X; Ŵ 1:L+1)[CLS]

∥∥∥+∥∥∥(w − ŵ)⊤g
(L+1)
block (X; Ŵ 1:L+1)[CLS]

∥∥∥
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The main proof ideas behind the above two lemmas is to unroll them, then use some norm properties and
the triangle inequality to split them up.

Now given these, we will prove the multiple layers covering number theorem. Suppose we have our linear
covering bound described in the theorem statement. Let X1, . . . , Xm be the inputs that is within our norm

bounds. Let W(i)
v ,W(i)

c ,W(i)
QK be the sets of all possible values for W

(i)
v , W

(i)
c ,W

(i)
QK respectively. Let Ŵ(i)

v

cover the function class {x → W⊤
v x | Wv ∈ W(i)

v , ∥x∥2 ≤ 1}, let Ŵ(i)
c cover the function class {x → W⊤

c x |
Wc ∈ W(i)

c , ∥x∥2 ≤ 1} and let Ŵ(i)
QK cover the function class {x → WQKx | WQK ∈ W(i)

QK , ∥x∥2 ≤ 1} except

for Ŵ(1)
QK , which covers the same function class, but with ∥x∥ ≤ Bx. Let all of these classes be covered

with mT points and let ϵ
(i)
v , ϵ

(i)
c , ϵ

(i)
QK be the resolution for each cover. Also, let Ŵ cover {x → w⊤x | w ∈

W, ∥x∥ ≤ 1} at resolution ϵw. The exact value of these resolutions will be shown at the end.

We will show that for any ϵ > 0 and for any W 1:L+1 that satisfies our norm bounds that there exists a

Ŵ 1:L+1 ∈ Ŵ(1)
c ⊗ Ŵ(1)

v ⊗ Ŵ(1)
QK ⊗ · · · ⊗ Ŵ(L)

c ⊗ Ŵ(L)
v ⊗ Ŵ(L)

QK ⊗ Ŵ

such that ∣∣∣gscalar(X;W 1:L+1, w) − gscalar(X; Ŵ 1:L+1, ŵ)
∣∣∣ ≤ ϵ

To start, we will use lemma E.3 to get∣∣∣gscalar(X;W 1:L+1, w) − gscalar(X; Ŵ 1:L+1, ŵ)
∣∣∣ ≤

∥w∥
∥∥∥g(L+1)

block (X;W 1:L+1)[CLS] − g
(L+1)
block (X; Ŵ 1:L+1)[CLS]

∥∥∥+
∥∥∥(w − ŵ)⊤g

(L+1)
block (X; Ŵ 1:L+1)[CLS]

∥∥∥ ≤

∥w∥
∥∥∥(g

(L+1)
block (X;W 1:L+1) − g

(L+1)
block (X; Ŵ 1:L+1))⊤

∥∥∥
2,∞

+ ϵw

Now, we use lemma E.2 to see∥∥∥(g
(L+1)
block (X;W 1:i+1) − g

(L+1)
block (X; Ŵ 1:i+1))⊤

∥∥∥
2,∞

≤∥∥∥∥(W (L)
c − Ŵ (L)

c )⊤σ
(

Πnorm

(
f(g

(L)
block(X; Ŵ 1:L); Ŵ (L))

))⊤∥∥∥∥
2,∞

+

LσBc2Bv2(1 + 4BQK2)
∥∥∥(g

(L)
block(X;W 1:L) − g

(L)
block(X; Ŵ 1:L))⊤

∥∥∥
2,∞

+

2LσBc2Bv2

∥∥∥(W
(i)
QK − Ŵ

(i)
QK)⊤g

(i)
block(X; Ŵ 1:i)⊤

∥∥∥
2,∞

+

LσBc2

∥∥∥(W (L)
v − Ŵ (L)

v )⊤g
(L)
block(X; Ŵ 1:L)⊤

∥∥∥
2,∞

Notice that if C(i) ∈ Rd×T , i ∈ [m], W ∈ Rk×d

max
i∈[m]

∥∥∥(W − Ŵ )C(i)
∥∥∥
2,∞

= max
i∈[m],t∈[T ]

∥∥∥(W − Ŵ )C
(i)
t

∥∥∥
Therefore we can use our covering number bounds to bound the values in the ∥·∥2,∞.

Thus, we get∥∥∥(g
(L+1)
block (X;W 1:i+1) − g

(L+1)
block (X; Ŵ 1:i+1))⊤

∥∥∥
2,∞

≤

ϵ(L)
c + LσBc2ϵ

(L)
v + 2LσBc2Bv2ϵ

(L)
QK + LσBc2Bv2(1 + 4BQK2)

∥∥∥(g
(L)
block(X;W 1:L) − g

(L)
block(X; Ŵ 1:L))⊤

∥∥∥
2,∞

Now note how we can iteratively do this for
∥∥∥(g

(L)
block(X;W 1:L) − g

(L)
block(X; Ŵ 1:L))⊤

∥∥∥
2,∞

until we have gotten

to the base case of g
(1)
block(X; Ŵ 1:1)) = X. Thus, if we let

αi =

L∏
j=i+1

LσBc2Bv2(1 + 4BQK2)



Jacob Trauger, Ambuj Tewari

we can see that

max
i∈m

∣∣∣gscalar(Xi;W
1:L+1, w) − gscalar(Xi; Ŵ

1:L+1, ŵ)
∣∣∣ ≤

ϵw + Bw

(
L∑

i=2

αi(ϵ
(i)
c + LσBc2ϵ

(i)
v + 2LσBc2Bv2ϵ

(i)
QK)

)
+ Bwα1

(
ϵ(1)c + LσBc2ϵ

(1)
v + 2LσBc2Bv2ϵ

(1)
QK

)
We left the first layer outside of the sum so we can recall ϵ

(1)
QK has a different input bound than the rest.

Now, we can use lemma E.1 to get our desired sizes for our different ϵ’s and get our covering number stated
in the theorem.

F Other Corollaries of Theorem 4.2

Corollary F.0.1. Suppose we have the norm bounds required in lemma 3.3 for each W
(i)
c ,W

(i)
v ,W

(i)
QK , w

and let the maximum be B. Let Bx be the input bound. Suppose we also have the bounds needed for theorem
4.2. Let

αi =
L∏

j=i+1

LσBc2Bv2(1 + 4BQK2)

τi = α
2/3
i + (2αiLσBc2Bv2)

2/3 + (αiLσBv2)
2/3

γ =
(
dB2B2

x ln(2k + 1)
)1/3

(2LσBc2Bv2α1Bw)
2/3 +(

dB2 ln(2k + 1)
)1/3 (

1 + (BwLσBv2)
2/3
)

η =
(
dB2 ln(2k + 1)

)1/3(
B2/3

w

L∑
i=2

τi

)

Then, the log covering number of gL+1
scalar is

(γ + η)3

ϵ2

Corollary F.0.2. Suppose we have the norm bounds required in lemma 3.4 for each W
(i)
c ,W

(i)
v ,W

(i)
QK , w

and let the maximum be B. Let Bx be the input bound. Suppose we also have the bounds needed for theorem
4.2. Let

αi =

L∏
j=i+1

LσBc2Bv2(1 + 4BQK2)

τi = α
2/3
i + (2αiLσBc2Bv2)

2/3 + (αiLσBv2)
2/3

γ =
(
B2B2

x ln(dk)
)1/3

(2LσBc2Bv2α1Bw)
2/3 +(

B2 ln(dk)
)1/3 (

1 + (BwLσBv2)
2/3
)

η =
(
B2 ln(dk)

)1/3(
B2/3

w

L∑
i=2

τi

)

Then, the log covering number of gL+1
scalar is

(γ + η)3

ϵ2

G Proof Cross Entropy with Softmax is ℓ∞ Lipshitz

We want to show that L(ŷ, y) =
∑K

i=1 −yi log(softmax(x)i) satisfies the following:

∀ŷ1, ŷ2 ∈ RK |L(ŷ1, y) − L(ŷ2, y)| ≤ 2 ∥ŷ1 − ŷ2∥∞
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where y is a one-hot encoded vector where index i is hot. Then, notice by the mean value theorem and
Holder’s inequality, we have:

∃x ∈ RK |L(ŷ1, y) − L(ŷ2, y)| ≤ ∥∇L(x, y)(ŷ1 − ŷ2)∥1 ≤ ∥∇L(x, y)∥1 ∥(ŷ1 − ŷ2)∥∞

Thus, if we can bound ∥∇L(z, y)∥1, we are done. Notice we can rewrite our loss as:

L(x, y) =

K∑
i=1

−yi log

(
exi∑K
t=1 e

xt

)

Only one value in the sum survives since only the ith value in y is set to 1 and the others are set to 0. Thus,
for i and for j ̸= i:

∂L(x, y)

∂xi
= −

∑K
t=1 e

xt

exi

exi

(∑K
t=1 e

xt

)
− exiexi(∑K

t=1 e
xt

)2 = −
∑K

t ̸=i e
xt∑K

t=1 e
xt

∂L(x, y)

∂xj
=

1∑K
t=1 e

xt

exj =
exj∑K
t=1 e

xt

Thus for any x, we have:

∥∇L(x, y)∥1 =

∑K
j ̸=i e

xj∑K
j=1 e

xj

+
∑
j ̸=i

exj∑K
t=1 e

xt

=
2
∑K

j ̸=i e
xj∑K

t=1 e
xt

≤ 2
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